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Abstract

This article presents a technique for modelling the dynamic response of spinning solids of revolution. The method is

especially adequate for considering those cases where the interesting displacements and the external forces are associated

with points at which the Eulerian coordinates are constant. The method is based on the modal properties of solids of

revolution: any deformed shape of the solid after rotation can be calculated as a linear combination of the non-rotating

modes. The obtained formulation takes account of the flexibility of the solid and the inertial and gyroscopic effects due to

the rotation. In this paper, the method is applied to a cylinder (considering an analytical and a numerical approach), and to

a railway wheelset.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A model for obtaining the dynamic response of a flexible solid of revolution has numerous practical utilities
such as rotor shafts [1–3], power generators and motors [4,5], vehicles [6] and certain manufacturing processes
[7]. During the development of the dynamic model of some of these applications we focus our attention on the
external surface shape of the solid, rather than the position of each material point. The importance of this
approach lies in the fact that the enveloping surface of the deformed solid of revolution determines the
interaction with the other non-rotating structures in the system. For example, the dynamic models of railway
vehicles consider the wheel–rail contact point and the positions of the wheelset axle boxes; these points are set
on a theoretical non-rotating surface that envelopes the solid.

Since the interest is on a non-rotating surface, it is easy to find works where the coupled dynamics between
two orthogonal planes containing the solid axis is neglected. The dynamic coupling is due to the inertial effects
associated with the rotation and in some cases, it is not negligible even if the angular velocity is low. There is a
lack of knowledge on how this coupling occurs. A first approach to consider the rotating effects was made by
different researchers through a beam model. Sheu and Yang [8] developed a rotating Rayleigh beam model
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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which allows to obtain the modal shapes and natural frequencies of the system. They stated that there is no
angular velocity above which the system is unstable; however there is a finite set of critical angular velocities.
In the Ref. [9] the dynamic coupling between two non-rotating orthogonal planes containing the undeformed
beam was concluded. The trajectory of any of the centre beam points was deduced to be a hypotrochoid curve.
The dynamic response was obtained as a function of a single parameter computed from the angular velocity
and the beam slenderness ratio. Non-negligible coupling between orthogonal planes containing the axis is
possible mainly if the slenderness ratio of the beam is small. A general procedure for obtaining the dynamic
response of rotating solids was deduced by Brown and Shabana [10]. The basis was the methodology for
elastic bodies presented in Ref. [11]. The deduced formulation is general and can be applied to any solid
geometry. They adopted a set of Lagrangian coordinates based on a modal approach. The method was applied
to an Euler beam in their paper.

The present work develops a model for obtaining the dynamic response of a general elastic solid of
revolution that turns around its main axis. The model is based on the method presented in the Ref. [10]. In
order to facilitate the study of the interaction with non-rotating structures, the model of Brown and Shabana
[10] was modified through the adoption of Eulerian coordinates. This set of coordinates avoids recalculating
the formulation in each time step during the integration if the external forces are applied in a constant spatial
point and if the displacements in a constant spatial point are required. The proposed coordinate set and its
properties are discussed in Section 2 of this article. The complete method is presented in Sections 3 (formulae)
and 4 (computational method). The paper shows some results in Section 5, where the model is applied to a
cylinder and a railway wheelset.
2. Kinematic model of the elastic solid of revolution

The methodology employed to model the kinematics of the solid is a general approach in Continuum
Mechanics of the type proposed by Mase and Mase [12]. For each time instant t, we define a Reference
Configuration (henceforth, RC) that corresponds to the position of each particle in the undeformed solid. We
adopt an inertial Cartesian frame Ox1x2x3, where x1 is the main axis of the solid of revolution in its RC. The
only large displacement corresponds to the spinning velocity of the solid, that is X ¼ O~x. We assume the
hypothesis of small displacements for the remaining motions.

Let u ¼ ðu1; u2; u3Þ
T be the position vector of a particle in the RC at the initial instant t ¼ 0. The position of

the particle in the RC at the time instant t, is calculated through the expression Au, where

A ¼

1 0 0

0 cos y � sin y

0 sin y cos y

0
B@

1
CA (1)

is the rotation matrix corresponding to the angular displacement y. Let UðuÞ be a mass-normalised
matrix field of mode shapes of the solid. To this end, we consider a finite number N of vibration modes of the
solid. The mode shapes are calculated for the free solid at the initial time instant t ¼ 0. They include the
deformed mode shapes of the solid and the rigid body modes. The position of a particle can be expressed as
follows:

rðu; tÞ ¼ AðuþUðuÞpÞ, (2)

where p ¼ p(t) is the vector of modal coordinates. This approach is shown in Fig. 1.
The mode shapes functions U for general solids are function of time if they are expressed through the non-

rotating system Ox1x2x3. This condition is not required if the solid has symmetry of revolution. Taking into
account that any deformed shape of the solid is obtained through a linear combination of the mode shapes, the
spatial coordinates associated with the solid can be calculated as follows:

sðv; tÞ ¼ vþUðvÞq, (3)

where q ¼ q(t) is a set of coordinates, and v is the Eulerian coordinate associated with the undeformed
geometry. This second approach is shown in Fig. 2.
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Fig. 1. Lagrangian approach: (a) reference configuration at initial time instant given by u. (b) Deformed shape after rotation given by

uþUðuÞp. (c) Final shape given by AðuþUðuÞpÞ.

Fig. 2. Eulerian approach: (a) reference configuration at initial instant given by u; (b) reference configuration at instant t given by v; and

(c) final shape given by vþUðvÞq.
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If at a certain time instant the particle defined through the Lagrangian coordinate r is situated in the spatial
point s, then the following relationships are obtained:

AðuþUðuÞpÞ ¼ vþUðvÞq, (4)

Au ¼ v (5)

and operating

AUðATvÞp ¼ UðvÞq. (6)

Defining the matrix B ¼ B(t) as

q ¼ Bp, (7)

the relationship (7) can be introduced in Eq. (6), resulting in

AUðATvÞ ¼ UðvÞB. (8)

Matrix B is deduced by multiplying Eq. (8) by rU(v)T and then integrating over the volume, r being the
density. Due to the orthogonal properties of the modes, matrix B yields

B ¼

Z
RCV

rUðvÞTAUðATvÞdu, (9)
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where the integral is extended to the RC volume (RCV). Matrix B is an orthogonal matrix, i.e.

BTB ¼ IN , (10)

where IN is the N�N identity matrix.
3. Equation of motion

The kinetic energy of the system is calculated as

T ¼
1

2

Z
SV

r_rT_rdu (11)

in which the integral is extended to the volume of the solid (SV). The integral limits will be changed from the
SV to RCV if we express the integrand through u or v. The elastic energy can be computed by means of the
following expression:

V ¼
1

2
pT ~Kp
� �

, (12)

where ~K being a diagonal matrix containing the square of the undamped natural frequencies associated with
the modes U. The equation of motion can be obtained through the Lagrange’s equations. From Eqs. (11) and
(12) it can be deduced that Z

SV

r
q_rT

q_p
€rþ

d

dt

q_rT

q_p
�

q_rT

qp

� �
_r

� �
duþ ~Kp ¼ Qp. (13)

The generalised force Qp is calculated from the generic volume forces f as follows:

QpðtÞ ¼

Z
RCV

qrðuÞT

qp
fðu; tÞdu ¼

Z
RCV

UðuÞTATfðu; tÞdu. (14)

It should be stated that net forces are particular cases of the volume forces. The development of Eq. (13)
provides the next equation of motion (which can be found in Appendix A of this article)

€pþ 2O ~J _pþ ð ~K� O2 ~EÞp ¼ Qp þ O2L, (15)

where the matrices in Eq. (15) are

J ¼ ATAy; ~J ¼

Z
RCV

rUTJUdu, (16)

E ¼ �AyyA
T; ~E ¼

Z
RCV

rUTEUdu, (17)

L ¼

Z
RCV

rUðuÞTEudu, (18)

Ay and Ayy being the first and second derivative of the matrix A which is defined in Eq. (1) with respect to
the angle y. Vector L contains constant radial centrifugal forces that produce axis-symmetrical radial
displacements. Consequently the non-zero terms of the vector L are associated with axis-symmetrical radial
modes such as breathing and umbrella modes.

The equation of motion adapted for an Eulerian approach is obtained by substituting Eq. (7) into Eq. (15),
i.e.

€qþ ð2OB ~JBT þ 2B _B
T
Þ_qþ ðB ~KBT � O2B ~EBT þ 2OB ~J _B

T
þ B €B

T
Þq ¼ BQp þ O2BL, (19)
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where the following relations are satisfied (see Appendix C for details):

B ~JBT ¼ ~J, (20)

B ~KBT ¼ ~K, (21)

B ~EBT ¼ ~E, (22)

B ~J _B
T
¼ O ~JZT, (23)

BL ¼ L. (24)

The matrix Z is defined as

Z ¼
1

O
_BBT. (25)

The Appendix B shows that

Z ¼ ~Jþ ~G, (26)

where

~G ¼

Z
RCV

r
X3
i¼1

qUT

qni

Jvð Þi

 !
Udu. (27)

If the external forces are always applied in the same spatial points, we can reformulate the generalised force
term. The spatial and the temporal variables in the force vector can be separated as follows:

fðv; tÞ ¼ FðvÞgðtÞ. (28)

Replacing Eq. (28) in the generalised force vector in Eq. (19), it yields

BQpðtÞ ¼ B

Z
RCV

UðuÞTATfðAu; tÞdu ¼
Z
RCV

UðvÞTfðv; tÞdu ¼
Z
RCV

UðvÞTFðvÞdugðtÞ. (29)

The previous integral does not depend on time. We define ~F as

~F ¼

Z
RCV

UðvÞTFðvÞdu. (30)

By substituting Eqs. (20)–(27) and (30) into Eq. (19), we have

€qþ 2O ~G
T
_qþ ~Kþ O2 ~J ~J

T
� ~G ~G

T
� ~E

� 	� 	
q ¼ ~FgðtÞ þ O2L. (31)

The latter equation can be compacted in the final form

€qþ 2O ~G
T
_qþ ~Kþ O2 ~C

� �
q ¼ ~FgðtÞ þ O2L, (32)

where ~C ¼ ~J ~J
T
� ~G ~G

T
� ~E. One advantage of this formulation is that ~G, ~K, ~C, ~F and L do not depend on

time and consequently, they can be calculated at the beginning of the simulation.

4. Computational method

The method developed previously can be formulated analytically only in simple cases, such as a beam
model. In order to analyse more complex structures such as railway wheelsets or non-uniform section shafts,
the present section proposes a numerical methodology. Taking into account that modal analysis of general
structures is usually calculated through a finite element (FE) model, we adopted the FE method in order to
obtain the matrices associated with the equation of motion (32).
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The FE modal analysis provides the modal solution in the nodes of the solid mesh. Let UFE be the
modal matrix obtained from the FE model. The modal function in the eth element can be estimated as
follows:

UeðvÞ ¼ NeðvÞUFE, (33)

where NeðvÞ is the FE basis function of the element e. If we substitute the last expression into Eqs. (16)–(18),
(27) and (30), we obtain

~J ¼ UT
FE

XNE

e¼1

Z
RCVe

rNeðvÞ
TJNeðvÞdu

 !
UFE, (34)

~G ¼ UT
FE

XNE

e¼1

Z
RCVe

r
X3
i¼1

qNeðvÞ
T

qni

ðJvÞi

 !
NeðvÞdu

 !
UFE, (35)

~E ¼ UT
FE

XNE

e¼1

Z
RCVe

rNeðvÞ
TENeðvÞdu

 !
UFE, (36)

~F ¼ UT
FE

XNE

e¼1

Z
RCVe

NeðvÞ
TFðvÞdu

 !
, (37)

L ¼ UT
FE

XNE

e¼1

Z
RCVe

rNeðvÞ
TEvdu

 !
, (38)

where NE is the number of elements in the mesh and the RCVe is the volume of the eth element. These
formulae are used in Eq. (32) to obtain all the terms required. The computational method was implemented in
the open source programme FEAP [13].
5. Case studies

The present section provides examples where the developed formulation has been applied. The method can
be considered in different ways, depending on how we obtain the modal properties associated with the solid of
revolution. In order to compare the results of two approaches, we first study a spinning cylinder with simply
supported ends where the modal properties are calculated analytically through a Rayleigh beam model and
numerically through a solid FE model. The former case allowed the validation of the proposed method since
this problem was also analysed in Ref. [8]. Two radii are considered: R1 ¼ 100mm and R2 ¼ 50mm. The beam
properties can be found in Table 1 and the first six natural frequencies are presented in Table 2. The slenderer
beam lets the comparison of the Rayleigh beam model with the FE model results. This geometry, however,
gives rise to a weak dynamic coupling between two orthogonal planes containing the beam axis. The coupling
Table 1

Properties of the beam model

Length L ¼ 1500mm

Density r ¼ 7800kg=m3

Section radii R1 ¼ 100mm; R2 ¼ 50mm

Young’s modulus E ¼ 2:1� 1011 N=m2

Poisson’s ratio n ¼ 0:3
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Table 2

Natural frequencies of the cylinders (in Hz)

Mode index Mode type Radius 50mm Radius 100mm

MEF Rayleigh beam model MEF Rayleigh beam model

1 1st Bending mode 89.03 90.43 176.88 180.14

2 2nd Bending mode 351.40 361.75 669.41 720.54

3 3rd Bending mode 774.14 813.93 1394.19 1621.22

4 4th Bending mode 1339.06 1446.99 2270.70 2882.18

5 1st Torsion mode 1060.55 — 1060.53 —

6 1st Breathing mode 1729.46 — 1727.69 —

J. Fayos et al. / Journal of Sound and Vibration 306 (2007) 618–635624
is more important for the cylinder with greater radius. Nevertheless, the behaviour of the greater radius
cylinder is influenced by the shear deformation and consequently the Rayleigh model does not fit the results
obtained through FEM.

Secondly, a more complex model is considered consisting of a railway wheelset. The associated equation of
motion shows not only a non-negligible coupling between the vertical and the horizontal planes, but also the
coupling appears between different modal frequencies.
5.1. Cylinder with simply supported ends modelled as a Rayleigh beam

The beam properties are the radius R, the length L, the Young’s modulus E, the density r, the section area A

and the inertia I. From Ref. [14], the nth mass-normalised mode shape calculated in the neutral fibre of the
beam is

fnðx1Þ ¼
1ffiffiffiffiffiffi
mn
p sin

npx1

L

� 	
(39)

and the nth natural frequency is

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðnpÞ4

2L3mn

s
, (40)

where mn has the following expression:

mn ¼
1

2
rAL 1� ðnpÞ2

I

AL2

� �
. (41)

If N modes of the beam are considered, matrix U is given by

U ¼

�x2
df1

dx1
�x3

df1

dx1
� � � �x2

dfN

dx1
�x3

dfN

dx1

f1 0 � � � fN 0

0 f1 � � � 0 fN

2
6664

3
7775. (42)

The adimensional parameter gn (for n ¼ 1,y, ) is introduced as

gn ¼
rIðnpÞ2

2Lmn

. (43)
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The matrices ~G and ~C are in this case

(44)

(45)

Other boundary conditions for the Rayleigh beam model provide similar ~G and ~C matrices where the non-
zero entries are in the same position than the precedent case. However the numerical values have been found
to be the same for both matrices (the gn parameter) only if the beam has simply supported ends.

The first four gn values for the R1 ¼ 100mm radius cylinder are the following:

g1 ¼ 1:08473� 10�2; g2 ¼ 4:20216� 10�2; g3 ¼ 8:98302� 10�2; g4 ¼ 1:49269� 10�1. (46)

The same parameters for the R2 ¼ 50mm radius cylinder are

g1 ¼ 2:73406� 10�3; g2 ¼ 1:08473� 10�2; g3 ¼ 2:40799� 10�2; g4 ¼ 4:20216� 10�2. (47)
5.2. Cylinder with simply supported ends modelled through a solid FE approach

Fig. 3 shows one of the meshes considered for the FE simulation. The FE model implements solid elements
(mainly eight-noded hexahedron elements). The modal coordinates are chosen by following the indices defined
Fig. 3. FE mesh of the cylinder.
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in Table 2. By applying Eqs. (34)–(37), the matrices ~G and ~C are

(48)

(49)

The coefficients in Eqs. (48) and (49) for the R1 ¼ 100mm radius cylinder are

~G1 ¼ 1:01418� 10�2; ~G2 ¼ 3:34913� 10�2; ~G3 ¼ 5:78728� 10�2,

~G4 ¼ 7:64661� 10�2; ~G5;6 ¼ 4:72596� 10�2, ð50Þ

~C1 ¼ 1:01984� 10�2; ~C2 ¼ 3:40008� 10�2; ~C3 ¼ 5:96499� 10�2,

~C4 ¼ 7:98716� 10�2; ~C5 ¼ 9:82364� 10�1; ~C6 ¼ 2:28426� 10�3. ð51Þ

The coefficients for the R2 ¼ 50mm radius cylinder are

~G1 ¼ 2:62673� 10�3; ~G2 ¼ 9:99684� 10�3; ~G3 ¼ 2:07960� 10�2,

~G4 ¼ 3:33952� 10�2; ~G5;6 ¼ 2:28727� 10�2, ð52Þ

~C1 ¼ 2:62588� 10�3; ~C2 ¼ 1:00175� 10�2; ~C3 ¼ 2:09189� 10�2,

~C4 ¼ 3:38040� 10�2; ~C5 ¼ 9:73875� 10�1; ~C6 ¼ 5:44035� 10�4. ð53Þ

5.3. Comparison between analytical and numerical model of the cylinder

The results in Sections 5.1 and 5.2 provide qualitative information about the influence of the model and the
coupling between two orthogonal planes containing the cylinder axis. The Rayleigh beam model is more
suitable if the cylinder is slender and consequently the matrices calculated by means of numerical and
analytical models are more similar for the 50mm radius cylinder. The matrix ~G couples the modes of
multiplicity 2. The entries in the matrices ~G and ~C are numerically bigger for the plump cylinder and therefore
the effect of the angular velocity may be more noticeable as was deduced in Ref. [9].

More quantitative information can be obtained from Figs. 4 and 5. Fig. 4 shows the direct FRF (receptance)
calculated for a point at a distance of 1050mm from the cylinder end. The receptances were calculated for the
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Fig. 4. Direct receptance function for a biarticulated cylinder with R2 ¼ 50mm. Analytical model and O ¼ 0 in black continuous trace;

analytical model and O ¼ 10 000 rev/min in black dash-dot trace; FEM and O ¼ 0 in grey dash trace; FEM and O ¼ 10 000 rev/min in grey

dot trace.
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cylinder with R2 ¼ 50mm radius through the analytical and numerical models. The results were performed for
a non-rotating cylinder and a spinning cylinder at 10000 rev/min. It can be observed that each peak in the non-
rotating FRF doubles into two peaks in the rotating FRF.

The previous result makes difficult to analyse the model influence through the matrices ~G and ~C because the
natural frequencies included in the matrix ~K depend on the model type. In order to discard the influence of
matrix ~K, the comparison of the FEM and Rayleigh beam FRF was carried out in Fig. 5, but implementing
the same ~K matrix in both models. The calculation was done for different angular velocities of the cylinder
with R1 ¼ 100mm. It can be observed that the differences between the models due to the matrices ~G and ~C are
only significant if the angular velocity of the cylinder is very high.
5.4. Railway wheelset with free boundary conditions through a FE approach

The FE mesh is shown in Fig. 6. The model has 5232 solid elements. The total length of the wheelset
is 2261mm, the wheel diameter is 1016mm and the mechanical properties of the material are those from
Table 1. The first 14 modes are described in Table 3 and those which involve elastic deformation are
represented in Fig. 7.

The numerical values of the matrices ~G, ~C, ~K and L for 14 modal coordinates are shown in
Eqs. (54)–(57). Fig. 8 outlines the matrices ~G and ~C for 50 modal coordinates. The matrix ~G couples
the modes of multiplicity 2 at the same frequency, but the coupling also exists between modes at
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different frequencies

(54)
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Fig. 6. FE mesh of a railway wheelset.

Table 3

Vibration modes of a railway wheelset

Mode number Frequency (Hz) Type

1–6 0 Rigid body

7 80.0 1st Torsion mode

8 93.7 1st Bending mode, horizontal plane

9 93.7 1st Bending mode, vertical plane

10 146.8 2nd Bending mode, horizontal plane

11 146.8 2nd Bending mode, vertical plane

12 226.7 1st Umbrella mode

13 287.6 3rd Bending mode, horizontal plane

14 287.6 3rd Bending mode, vertical plane

J. Fayos et al. / Journal of Sound and Vibration 306 (2007) 618–635 629
(55)

(56)

(57)
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Fig. 7. Elastic modes of the wheelset: (a) Mode 7, (b) Mode 12, (c) Mode 8, (d) Mode 9, (e) Mode 10, (f) Mode 11, (g) Mode 13, and (h)Mode 14.

J. Fayos et al. / Journal of Sound and Vibration 306 (2007) 618–635630
5.5. Receptance function of the railway wheelset

Fig. 9 shows the direct receptance function of the wheelset calculated for the vertical displacements of the
contact point. The calculation was performed for three angular velocities: 0, 500 rev/min (95.8 km/h) and
1000 rev/min. The spectrum is shown in the range of the 1st and 2nd flexural modes (multiplicity 2) and the
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Fig. 8. Map of the matrices ~G and ~C for 50 modal coordinates.

J. Fayos et al. / Journal of Sound and Vibration 306 (2007) 618–635 631
umbrella mode (multiplicity 1). It can be observed that each resonance peak associated with a mode with
multiplicity 2 of the non-rotating wheelset gives rise to two peaks when the angular velocity is non-zero.
However, the resonances associated with the modes with multiplicity 1 do not depend on the angular velocity
of the wheelset.
6. Conclusions

This article develops a complete method for modelling the dynamics of an elastic solid of revolution that
rotates about its main axis. This model is designed for those cases where the interest lies in the enveloping
surface of the solid, rather than the study of each material point. This viewpoint is especially useful for
complex systems formed by rotating and non-rotating solids, where the displacements and velocities of the
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non-rotating substructures and the displacements and velocities of the enveloping surface of the spinning solid
of revolution establish the coupling forces between the substructures.

The method is based on a modal approach where the mechanical properties of the solids are introduced
through the modal properties of the non-rotating structure. The final formulation consists of a set of linear
ODEs where their components do not depend on time. Consequently, the matrices are calculated once in the
beginning of the simulation and the computational costs are considerably reduced.

The proposed technique is applied to several cases: (1) two cylinders with different radii where the modal
properties are obtained by means of a Rayleigh beam model and through a FE model; and (2) a railway
wheelset. The comparison of the results between the FEM and the Rayleigh model for the cylinders reveals
small discrepancies due to the different approaches under consideration. The differences are smaller in the
slenderer cylinder, as expected.

Regarding the coupling between two orthogonal planes containing the solid axis, it depends on the off-
diagonal terms of the matrices ~G and ~C. An analysis of these matrices for the Rayleigh beam model shows that
the coupling exists between modes at the same frequency, while non-coincident frequency modes are
uncoupled. The coupling is stronger if the slenderness of the beam is small. Nevertheless, more complex
systems like a wheelset provide models where the coupling is not negligible and appears even between modes
of different frequencies.

As a result of the gyroscopic effects, each peak in the FRF associated with a mode with multiplicity 2 gives
rise to two resonances, one at lower frequency and the other at higher frequency. The frequency of the former
peak in the FRF converges to zero with the angular velocity of the solid. Nevertheless the peaks associated
with the modes with multiplicity 1 are not influenced by the angular velocity of the solid.
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Appendix A

The calculation of the terms involved in Eq. (13) yields

_r ¼ OAyðuþUpÞ þ AU_p, (A.1)

€r ¼ O2AyyðuþUpÞ þ 2OAyU_pþ AU€p, (A.2)

q_rT

q_p
€r ¼ UTAT O2AyyðuþUpÞ þ 2OAyU_pþ AU€p

� �
, (A.3)

d

dt

q_rT

q_p
¼

q_rT

qp
¼ OUTAT

y )
d

dt

q_rT

q_p
�

q_rT

qp

� �
_r ¼ 0. (A.4)

where Ay and Ayy are the first and second derivative of the matrix A defined in Eq. (1) with respect the angle y.
Replacing Eqs. (A.1)–(A.4) into Eq. (13) leads to

€pþ 2O
Z
RCV

rUTJUdu _pþ ~K� O2

Z
RCV

rUTEUdu
� �

p ¼ Qp þ O2

Z
RCV

rUTEudu. (A.5)

It can be easily proved that J and E are given by

E ¼

0 0 0

0 1 0

0 0 1

0
B@

1
CA; J ¼

0 0 0

0 0 �1

0 1 0

0
B@

1
CA. (A.6)

From Eqs. (8) and (17)

B

Z
RCV

rUðuÞTEu du ¼ �
Z
RCV

rBUðuÞTATAyyu du ¼ �
Z
RCV

rUðAuÞTAATAyyudu

¼ �

Z
RCV

rUðAuÞTAyyudu ¼ �
Z
RCV

rUðAuÞTAyyA
TAudu ¼

Z
RCV

rUðAuÞTEAudu

¼

Z
RCV

rUðvÞTEvdu. ðA:7Þ

Eq. (15) is obtained from Eq. (A.5) by defining the matrices given in Eqs. (16) and (17).

Appendix B

Considering the orthogonal properties of matrix B, the combination of Eqs. (5) and (8) yields

ATUðAuÞ ¼ UðuÞBT. (B.1)

The matrix UðuÞ does not depend on time. However UðAuÞ is a function of time through the matrix A.
Taking into account these facts, if Eq. (B.1) is transposed and differentiated with respect to time, the following
relation is found:

_BUðuÞT ¼ _UðAuÞTAþUðAuÞT _A. (B.2)

Eqs. (B.1) and (B.2) can be multiplied to obtain

_BUðuÞTUðuÞBT ¼ _UðAuÞTAATUðAuÞ þUðAuÞT _AATUðAuÞ. (B.3)
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Now an integration is carried out over the RC volume, giving

_B

Z
RCV

rUðuÞTUðuÞduBT ¼

Z
RCV

r _UðAuÞTUðAuÞ þUðAuÞTOJUðAuÞ
� �

du. (B.4)

Further operations lead to

ZO ¼ _BBT ¼

Z
RCV

r _UðvÞTUðvÞ þ OUðvÞTJUðvÞ
� �

du. (B.5)

From the expression

_UðvÞ ¼
X3
i¼1

qUðvÞ
qni

_ni ¼
X3
i¼1

qUðvÞ
qni

dv

dt

� �
i

¼
X3
i¼1

qUðvÞ
qni

ð _AuÞi ¼
X3
i¼1

qUðvÞ
qni

ð _AATvÞi ¼ O
X3
i¼1

qUðvÞ
qni

ðJvÞi, (B.6)

Eq. (26) is found.
Appendix C

Demonstration of Eq. (20)

B ~JB
T
¼ B

Z
RCV

rUðuÞTJUðuÞduBT ¼

Z
RCV

rBUðuÞTAyA
TUðuÞBT du

¼

Z
RCV

rUðAuÞTAAyA
TATUðAuÞdu ¼

Z
RCV

rUðAuÞTAATAyA
TUðAuÞdu

¼

Z
RCV

rUðAuÞTJUðAuÞdu ¼
Z
RCV

rUðvÞTJUðvÞdu ¼ ~J. ðC:1Þ

Demonstration of Eq. (22)

B ~EB
T
¼ B

Z
RCV

rUðuÞTEUðuÞduBT ¼ �

Z
RCV

rBUðuÞTAyyA
TUðuÞBT du

¼ �

Z
RCV

rUðAuÞTAAyyA
TATUðAuÞdu ¼ �

Z
RCV

rUðAuÞTAATAyyA
TUðAuÞdu

¼

Z
RCV

rUðAuÞTEUðAuÞdu ¼
Z
RCV

rUðvÞTEUðvÞdu ¼ ~E. ðC:2Þ

Demonstration of Eq. (23)

B ~J _B
T
¼ B

Z
RCV

rUðuÞTJUðuÞdu _B
T
¼

Z
RCV

rBUðuÞTAyA
TUðuÞBTB _B

T
du

¼ O
Z
RCV

rUðAuÞTAAyA
TATUðAuÞZT du ¼ O

Z
RCV

rUðAuÞTAATAyA
TUðAuÞZT du

¼ O
Z
RCV

rUðAuÞTJUðAuÞduZT ¼ O
Z
RCV

rUðuÞTJUðuÞduZT ¼ 2O2 ~JZT. ðC:3Þ

The demonstration of Eq. (21) is due to the fact that the set q consists of modal coordinates, and
consequently the elastic energy is

V ¼
1

2
qT ~Kq
� �

. (C.4)

The non-zero terms in L are associated with modes with multiplicity 1. The rows and columns of B related
to modes with multiplicity 1 are 0 (off-diagonal) or 1 (diagonal). Consequently, Eq. (24) is fulfilled.
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